# The Dividend Discount Model Mid-Term Discounting 

Gary Schurman, MBE, CFA

May, 2019

In this white paper we will revise the Dividend Discount Model (DDM) for mid-term discounting. The standard DDM assumes that cash flow is received at the end of each annual period. Mid-term discounting assumes that cash flow is received at various points within each annual period. To that end we will work through the following hypothetical problem...

## Our Hypothetical Problem

Assume that we are tasked with calculating the enterprise value of ABC Company given the following model parameters...

Table 1: Model Parameters

| Description | Value |
| :--- | ---: |
| Free cash flow at time zero | $\$ 1,000.00$ |
| Annualized growth rate of free cash flow | $5.00 \%$ |
| Annualized cost of capital | $15.00 \%$ |

Question 1: What is the enterprise value of $A B C$ Company given annual discounting?
Question 2: What is the enterprise value of ABC Company given monthly discounting?
Question 3: What is the enterprise value of ABC Company given continuous discounting?

## Revising The DDM Model

We will define the variable $C_{n}$ to be free cash flow in period $n$. Using Table 1 above, the equation for free cash flow in period zero is...

$$
\begin{equation*}
C_{0}=1,000.00 \tag{1}
\end{equation*}
$$

We will define the variable $m$ to be the number of intraperiods within each annual discounting period $n$ and the variable $\Delta$ to be intraperiod length in years. This statement in equation form is...

$$
\begin{equation*}
m=\text { Number of intraperiods within each annual discounting period ...such that... } \Delta=\frac{1}{m} \tag{2}
\end{equation*}
$$

We will define the variable $g$ to be the periodic growth rate of free cash flow. Using Equation (2) above, the equation for the periodic free cash flow growth rate is...

$$
\begin{equation*}
g=(1+\text { annual rate })^{1 / m}-1 \ldots \text { when } . . m<\infty \mid g=\ln (1+\text { annual rate }) \ldots \text { when } . . m=\infty \tag{3}
\end{equation*}
$$

We will define the variable $k$ to be the periodic cost of capital. Using Equation (2) above, the equation for the periodic cost of capital is...

$$
\begin{equation*}
k=(1+\text { annual rate })^{1 / m}-1 \ldots \text { when... } m<\infty \mid k=\ln (1+\text { annual rate }) \ldots \text { when... } m=\infty \tag{4}
\end{equation*}
$$

We will define the variable $V_{0}$ to be the present value of free cash flow at time zero (i.e. enterprise value) and the variable $\theta$ to be the discount factor. Using Equations (1), (3) and (4) above, the equation for enterprise value is... [2]

$$
\begin{equation*}
V_{0}=\Delta C_{0} \sum_{n=1}^{\infty} \theta^{n} \ldots \text { when... } m<\infty \mid V_{0}=C_{0} \int_{0}^{\infty} \operatorname{Exp}\{(g-k) t\} \delta t \ldots \text { when } . . m=\infty \tag{5}
\end{equation*}
$$

We will define the variable $\Gamma$ to be the cash flow valuation multiple. Using Equation (5) above, the equation for the cash flow valuation multiple is... [1]

$$
\begin{equation*}
\Gamma=\Delta \sum_{n=1}^{\infty} \theta^{n}=\Delta \frac{\theta}{1-\theta} \ldots \text { when... } m<\infty \left\lvert\, \Gamma=\int_{0}^{\infty} \operatorname{Exp}\{(g-k) t\} \delta t=\frac{1}{k-g} \ldots\right. \text { when... } m=\infty \tag{6}
\end{equation*}
$$

Using Equations (5) and (6) above, the equation for enterprise value is...

$$
\begin{equation*}
V_{0}=\Gamma C_{0} \tag{7}
\end{equation*}
$$

## Annual Discounting

Question 1: What is the enterprise value of ABC Company given annual discounting?
Using Equation (2) above, the equation for the number of intraperiods within each annual discounting period is...

$$
\begin{equation*}
m=1 \ldots \text { such that... } \Delta=\frac{1}{m}=1 \tag{8}
\end{equation*}
$$

Using Equations (3), (4) and (8) above and the data in Table 1 above, the equations for the intraperiod cash flow growth rate and cost of capital are...

$$
\begin{equation*}
g=(1+0.0500)^{1}-1=0.0500 \ldots \text { and... } k=(1+0.1500)^{1}-1=0.1500 \tag{9}
\end{equation*}
$$

If annual cash flow grows that rate $g$ and is discounted at rate $k$ then using Equation (9) above, the value of the discount factor in Equation (5) above is...

$$
\begin{equation*}
\theta=\frac{1+g}{1+k}=\frac{1+0.0500}{1+0.1500}=0.91304 \tag{10}
\end{equation*}
$$

Using Equations (6) and (10) above, the value of the cash flow multiple is...

$$
\begin{equation*}
\Gamma=1.0000 \times \frac{0.91304}{1-0.91304}=10.50 \tag{11}
\end{equation*}
$$

Using Equations (1), (7), and (11) above, the answer to the question is...

$$
\begin{equation*}
V_{0}=\Gamma C_{0}=10.50 \times 1,000=10,500 \tag{12}
\end{equation*}
$$

## Monthly Discounting

Question 2: What is the enterprise value of ABC Company given monthly discounting?
Using Equation (2) above, the equation for the number of intraperiods within each annual discounting period is...

$$
\begin{equation*}
m=12 \ldots \text { such that... } \Delta=\frac{1}{m}=0.0833 \tag{13}
\end{equation*}
$$

Using Equations (3), (4) and (13) above and the data in Table 1 above, the equations for the intraperiod cash flow growth rate and cost of capital are...

$$
\begin{equation*}
g=(1+0.0500)^{0.0833}-1=0.00407 \ldots \text { and } . . k=(1+0.1500)^{0.0833}-1=0.01172 \tag{14}
\end{equation*}
$$

If annual cash flow grows that rate $g$ and is discounted at rate $k$ then using Equation (14) above, the value of the discount factor in (5) above is...

$$
\begin{equation*}
\theta=\frac{1+g}{1+k}=\frac{1+0.00407}{1+0.01172}=0.99245 \tag{15}
\end{equation*}
$$

Using Equations (6) and (15) above, the value of the cash flow multiple is...

$$
\begin{equation*}
\Gamma=0.0833 \times \frac{0.99245}{1-0.99245}=10.95 \tag{16}
\end{equation*}
$$

Using Equations (1), (7), and (16) above, the answer to the question is...

$$
\begin{equation*}
V_{0}=\Gamma C_{0}=10.95 \times 1,000=10,950 \tag{17}
\end{equation*}
$$

## Continuous Discounting

Question 3: What is the enterprise value of ABC Company given continuous discounting?
Using Equation (2) above, the equation for the number of intraperiods within each annual discounting period is...

$$
\begin{equation*}
m=\infty \text {...such that... } \Delta=\frac{1}{m}=0 \tag{18}
\end{equation*}
$$

Using Equations (3), (4) and (18) above and the data in Table 1 above, the equations for the intraperiod cash flow growth rate and cost of capital are...

$$
\begin{equation*}
g=\ln (1+0.0500)=0.04879 \ldots \text { and } \ldots k=\ln (1+0.1500)=0.13976 \tag{19}
\end{equation*}
$$

Using Equations (6) and (19) above, the value of the cash flow multiple is...

$$
\begin{equation*}
\Gamma=\frac{1}{0.13976-0.04879}=10.99 \tag{20}
\end{equation*}
$$

Using Equations (1), (7), and (20) above, the answer to the question is...

$$
\begin{equation*}
V_{0}=\Gamma C_{0}=10.99 \times 1,000=10,999 \tag{21}
\end{equation*}
$$

## References

[1] Gary Schurman, Polylogarithm Of Order Zero, May, 2019
[2] Gary Schurman, The Dividend Discount Model, May, 2019

